Eurograd message

Message posted on 15/07/2020

CfP: Minds & Machines Special Issue on "Machine Learning: Prediction Without Explanation?"

Call for Papers for a /Minds & Machines/ Special Issue on

Machine Learning: Prediction Without Explanation?

Over the last decades, Machine Learning (ML) techniques have gained
central prominence in many areas of science. ML typically aims at
pattern recognition and prediction, and in many cases has become a
better tool for these purposes than traditional methods. The downside,
however, is that ML does not seem to provide any explanations, at least
not in the same sense as theories or traditional models do.

This apparent lack of explanation is often also linked to the opacity of
ML techniques, sometimes referred to as the ‘Black Box Challenge’.
Methods such as heat maps or adversarial examples are aimed at reducing
this opacity and opening the black box. But at present, it remains an
open question how and what exactly these methods explain and what the
nature of these explanations is.
While in some areas of science this may not create any interesting
philosophical challenges, in many fields, such as medicine, climate
science, or particle physics, an explanation may be desired; among other
things for the sake of rendering subsequent decisions and policy making
transparent. Moreover, explanation and understanding are traditionally
construed as central epistemic aims of science in general. Does a turn
to ML techniques hence imply a radical shift in the aims of science?
Does it require us to rethink science-based policy making? Or does it
mean we need to rethink our concepts of explanation and understanding?

In this Special Issue, we want to address this complex of questions
regarding explanation and prediction, as it attaches to ML applications
in science and beyond.
We invite papers focusing on but not restricted to the following topics:

•    (How) can ML results be used for the sake of explaining scientific
•    If so, what is the nature of these explanations?
•    Will future science favor prediction above explanation?
•    If so, what does this mean for science-based decision and policy
•    What is explained about ML by methods such as saliency maps and
•    Does ML introduce a shift from classical notions of scientific
explanation, such as causal-mechanistic, covering law-, or
unification-based, towards a purely statistical one?
•    (Why) should we trust ML applications, given their opacity?
•    (Why) should we care about the apparent loss of explanatory power?

The Special Issue is guest edited by members of the project /The impact
of computer simulations and machine learning on the epistemic status of
LHC Data/, part of the DFG/FWF-funded interdisciplinary research unit
/The Epistemology of the Large Hadron Collider

/ For more information, please visit


Deadline for paper submissions: 28 February 2021
Deadline for paper reviewing: 19 April 2021
Deadline for submission of revised papers: 03 May 2021
Deadline for reviewing revised papers: 07 June 2021
Papers will be published in 2021

Submission Details
To submit a paper for this special issue, authors should go to the
journal’s Editorial Manager The author (or a
corresponding author for each submission in case of co- authored papers)
must register into EM.
The author must then select the special article type: "Machine Learning:
Prediction without Explanation?” from the selection provided in the
submission process. This is needed in order to assign the submissions to
the Guest Editor.
Submissions will then be assessed according to the following procedure:
New Submission => Journal Editorial Office => Guest Editor(s) =>
Reviewers => Reviewers’ Recommendations => Guest Editor(s)’
Recommendation => Editor-in-Chief’s Final Decision => Author
Notification of the Decision.
The process will be reiterated in case of requests for revisions.

_Guest Editors
•    Dr. Florian J. Boge, postdoctoral researcher, Interdisciplinary
Centre for Science and Technology Studies (IZWT), Wuppertal University
•    Paul Grünke, doctoral student, research group “Philosophy of
Engineering, Technology Assessment, and Science”, Institute for
Technology Assessment and Systems Analysis (ITAS), Karlsruhe Institute
of Technology (KIT)
•    Prof. Dr. Dr. Rafaela Hillerbrand, head of the research group
“Philosophy of Engineering, Technology Assessment, and Science”,
Institute for Technology Assessment and Systems Analysis (ITAS),
Karlsruhe Institute of Technology (KIT)

For any further information please contact:
-    Dr. Florian J. Boge:
-    Paul Grünke:

EASST's Eurograd mailing list
Eurograd (at)
Unsubscribe or edit subscription options:

Meet us via

Report abuses of this list to

view as plain text
Follow by Email